
CUSTOMER CASE STUDY

Upgrading Consul At Scale
Tasked with upgrading dozens of Consul environments of 
varying versions on premise and in the cloud, Github 
engaged Nebulaworks as the strategic partner to help 
with this initiative.



Executive Summary
Deploying distributed systems like Consul for service discovery, and key value store at scale is a
complex initiative. When it comes to upgrading and maintaining these systems teams must do
their due diligence to assure that operating on it will not have any drastic effects on the software
consuming its services. Tasked with upgrading dozens of Consul environments of varying versions
on premise and in the cloud. Nebulaworks worked with GitHub to develop and execute a plan that
reduced risk and increased transparency when upgrading these environments.

Why Nebulaworks?
There was no existing solution to this problem. A consul test framework simply does not exist, nor
has this distributed system (consul) lived long enough to provide concrete evidence for its claims
of backwards compatibility and robustness across versions. It needed to be built from scratch with
the constraints and consideration in mind by like minded engineers that understood the depths to
which consul had infiltrated the foundations of the GitHub back end ecosystem. Coupling this with
the fact that a rollback or recovery scenario for the distributed system as large as GitHub’s multi-
cluster, multi-region wan federated WAN consul platform was something that was just as risky as
the upgrade, GitHub had to find a partner that understood the severity of this problem.

The Challenge
Tools that provide service discovery such as Hashicorp’s Consul, provide the glue that enables
different software services the ability to communicate with each other. A variety of GitHub internal
services were using a wide range of Consul functionality that were critical to production services
including service discovery, key value stores, semaphores and locking mechanisms. This massive
Consul footprint included dozens of revenue generating multi-clustered, and multi-region
deployments connected over WAN. If these services were to break, crash, or become unavailable,
so would many customer-facing services. This core component to the infrastructure was 2 years
and several versions behind the latest leaving an exploit waiting to be compromised thus an
upgrade was necessary. The upgrade process would not be to simply replace a binary and reboot
the machine. Due to the sheer size and architecture of the Consul deployments, dozens of
different teams dependent on it, and the multitude of runtime languages consuming Consul
services, it was critical for the team to determine how upgrading binaries would affect consumers
in a transparent and automated fashion. At all costs the team wanted to prevent any downtime
while operating on these clusters. Maintaining uptime of these systems was essential due to the
tightly coupled dependencies of Consul and these applications GitHub needed a way to upgrade
these clusters transparently, without disrupting these business critical systems.

Nebulaworks is a trademark of Nebulaworks, Inc., in the USA and/or other countries. All other brand 
names, product names, or trademarks belong to their respective holders. Nebulaworks reserves the 
right to alter product offerings and specifications at any time without notice, and is not responsible for 
typographical or graphical errors that may appear in this document.

© 2024 Nebulaworks Inc. All rights reserved.



The Solution
While considering the sensitive nature of these systems, Nebulaworks engineered a concise,
strategic, and actionable testing plan for upgrading Consul server and agent binaries while taking
into consideration the details of how applications were leveraging different Consul services. The
key to the upgrade was twofold: First the team wanted to understand the behavior of executing a
rolling update for a single Consul Cluster and two, determine the behavior of the larger geographic
Consul WAN clusters when one was updated.

The vision that the team had for tackling this initiative was to build an automated test framework
that would provide detailed information on what would happen when a Consul cluster is updated.
The first step in this initiative was to determine the compatibility of versions in the existing Consul
clusters. By using Linux Containers, the team defined a compatibility matrix, built containers
running different versions of consul, and simulated the version swap to discover version
incompatibilities quickly and with low risk.

Operating on the revenue generating production environment was not an option and simulating
the version upgrade on containers was not a sufficient test environment, so the team developed
isolated sandbox deployments of multiple-interconnected Consul Clusters in AWS using
Infrastructure as Code (IaC). With these sandbox environments that mirrored production systems
the team could simulate the upgrades more accurately.

Nebulaworks engineered a concise, strategic, and actionable testing plan for upgrading Consul 
server and agent binaries while taking into consideration the details of how applications were 
leveraging different Consul services.

Serverspec was a tool used that provided server validation for the Consul Clusters deployed to the
cloud. Serverspec not only provided configuration validation, it also provided the ability to execute
functional tests. These functional tests were built in Go, Ruby and Bash in order to simulate
different application runtimes that were currently leveraging the different consul services. A set of
tests would write data pre-upgrade, then the upgrade would be performed, and the same tests
would re-read that same data to determine if the upgrade did not affect existing data.

The update process itself was done in version increments to prove as a Minimum Viable Product
(MVP) of the upgrade working properly. Since backwards compatibility was a requirement for
some features in use, the testing procedures for the rolling update needed to incrementally test
different versions to ensure that no versions in between current and target versions, would create
regression failures. Any bugs that were found during these incremental updates were addressed
in the test environment.

Nebulaworks is a trademark of Nebulaworks, Inc., in the USA and/or other countries. All other brand 
names, product names, or trademarks belong to their respective holders. Nebulaworks reserves the 
right to alter product offerings and specifications at any time without notice, and is not responsible for 
typographical or graphical errors that may appear in this document.

© 2024 Nebulaworks Inc. All rights reserved.



Outcome
Equipped with an actionable testing plan, the GitHub team was able to confidently wield the
testing framework and process to validate the result of upgrades on multi-cluster, multi-region
staging and production environments. What made the knowledge transfer successful was the
constant collaboration and participation of GitHub and Nebulaworks Engineers. With intimate
knowledge of the testing code base, the GitHub team was able to reduce the risk and increase
transparency into the upgrades as they took place. Most importantly, the operations team
responsible for the Consul clusters were able to fulfill a security audit request, taking their systems
out of harms way, and upgrading to the latest version of Consul as of writing this. Today GitHub
continues to use Open Source Consul in order to provide critical services that support customer-
facing systems.

Nebulaworks is a trademark of Nebulaworks, Inc., in the USA and/or other countries. All other brand 
names, product names, or trademarks belong to their respective holders. Nebulaworks reserves the 
right to alter product offerings and specifications at any time without notice, and is not responsible for 
typographical or graphical errors that may appear in this document.

© 2024 Nebulaworks Inc. All rights reserved.


